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Abstract. Quantitative analysis of fast and slow diffusion from abdom-
inal Diffusion-weighted MRI has the potential to provide important new
insights into physiological and microstructural properties of the body.
However, the commonly used, independent voxel-wise fitting of the sig-
nal decay model leads to imprecise parameter estimates, which has ham-
pered their practical usage. In this work we evaluated the improvement in
the precision of the fast and slow diffusion parameter estimates achieved
by using a spatially-constrained Incoherent Motion (SCIM) model of
DW-MRI signal decay in 5 healthy subjects and 24 Crohn’s disease pa-
tients. We found that the improvement in Coefficient of Variation (CV)
of the parameter estimates achieved using the SCIM model was signif-
icantly larger compared to thus achieved by repeated acquisition and
signal averaging (n=5, paired Student’s t-test, p ≤ 0.05). We also found
that the SCIM model reduced the coefficient of variation of the parame-
ter estimates of the D∗ and f parameter estimates in the ileum by 30%
compared to the independent voxel-wise fitting of the signal decay model
in the Crohn’s patients data (n=24, paired Student’s t-test, p ≤ 0.05).
The SCIM model is more precise for quantitative analysis of abdominal
DW-MRI signal decay.

1 Introduction

Diffusion-weighted MRI (DW-MRI) of the body is a non-invasive imaging tech-
nique sensitive to the incoherent motion of water molecules inside the area of
interest. This motion is known to be a combination of a slow diffusion compo-
nent associated with the Brownian motion of water molecules, and a fast diffu-
sion component associated with the bulk motion of intravascular molecules in
the micro-capillaries. These phenomena are characterized through the so-called,
intra-voxel incoherent motion (IVIM) model with the slow diffusion (D); the fast
diffusion (D∗) as decay rate parameters; and the fractional contribution (f) of
each motion to the DW-MRI signal decay [13,14,12].

IVIM model parameters have recently shown promise as quantitative imaging
biomarkers for various clinical applications in the body including differential



(a)

S11S12S13

S21S22S23

S41S42S43

S31S32S33

Θ1

Θ2

Θ4

Θ3

(b) (c)

S1

S2

S4

S3

Θ1

Θ2

Θ4

Θ3

(d)

Fig. 1: Illustration of the graphical models used to estimate the fast and slow dif-
fusion parameters from DW-MRI data. (a, b) represents independent voxel-wise
estimation of intra-voxel incoherent motion with multiple DW-MRI images av-
eraged, and (c, d) represents voxel-wise estimation of the DW-MRI signal decay
model parameters using the spatially constrained incoherent motion model.

analysis of tumors [21,20,11,1,10,15], the assessment of liver cirrhosis [17,19],
and Crohn’s disease [7].

However, the utility of IVIM parametric imaging with DW-MRI is diminished
by a lack of verified methods for producing reliable estimates of both fast and
slow diffusion parameters from the DW-MRI signal [12]. Specifically, reliable
estimates of IVIM model parameters are difficult to obtain because of 1) the
non-linearity of the IVIM model; 2) the limited number of DW-MRI images
as compared to the number of the IVIM model parameters, and; 3) the low
signal-to-noise ratio (SNR) observed in body DW-MRI.

In current practice, the reliability of the incoherent motion parameter es-
timates is increased by acquiring multiple DW-MRI images from the patient;
next, average these results, and then use the averaged DW-MRI signal to es-
timate IVIM model parameters. However, this requires substantially increased
acquisition times - an undesirable outcome, especially in children, who generally
have difficulty in remaining still for long periods of time [12].

Recently, Freiman et al. introduced a new model of DW-MRI signal decay
which utilizes the spatial homogeneity as a constraint in the DW-MRI signal
decay [8,5]. Essentially, the Spatially Constrained Incoherent Motion (SCIM)
model produces estimates of Incoherent Motion model parameters for all voxels
simultaneously, rather than solving for each voxel independently. As a result, the
reliability of the incoherent motion parameter estimates from the DW-MRI data
is increased without acquiring additional data. Fig. 1 depicts the graphical mod-
els for the repeated acquisition method used previously to improve parameter
estimates reliability (a,b) compared to the SCIM model (c,d).

In this work, we evaluated the improvement in parameter estimates relia-
bility by means of Coefficient of Variation (CV) achieved by using our SCIM
model compared to the utilization of the repeated acquisition and signal averag-
ing technique using abdominal DW-MRI data of 5 healthy volunteers. We also
compared the CV of fast and slow diffusion parameter estimates obtained form



DW-MRI data of 24 Crohn’s disease patients using our SCIM model and the
commonly used independent voxel-wise fitting of the IVIM model.

We found that the SCIM model is up to 45% more efficient in improving
parameter estimate reliability compared to the repeated acquisition and signal
averaging technique (n=5, p≤0.05). We also found that the SCIM model provides
30% improvement in parameter estimates reliability compared to the indepen-
dent voxel-wise fitting of the IVIM model in DW-MRI data of Crohn’s disease
patients (p≤0.05).

2 Method

2.1 The Intravoxel incoherent motion model

The Intra-Voxel Incoherent Motion (IVIM) model of DW-MRI signal decay as-
sumes a signal decay function of the form [13,14]:

mv,i = s0,v (fv exp(−bi(D
∗
v +Dv)) + (1 − fv) exp(−bi(Dv))) (1)

where mi,v is the expected signal of voxel v at b-value=bi, s0,v is the baseline
signal at voxel v; Dv is the slow diffusion decay associated with extravascular
water molecules’ motion; D∗

v is the fast diffusion decay associated with the in-
travascular water molecules’ motion; and fv is the fraction between the slow and
fast diffusion compartments.

Given the DW-MRI data acquired with multiple b-values, the observed signal
(Sv) at each voxel v is a vector of the observed signal at the different b-values:
Sv = {sv,i}, i = 1 . . . N .

We model the IVIM model parameters at each voxel v as a continuous-valued
four-dimensional random variable (i.e. Θv = {s0,v, fv,D

∗
v ,Dv}). Commonly, the

IVIM model parameters Θv are estimated from the DW-MRI signal Sv using an
independent voxel-wise maximum-likelihood estimator:

Θ̂v = arg max
Θv

p(Sv|Θv) =

N∏

i=1

p(Sv,i|Θv) (2)

Using a Gaussian approximation of the non-central χ-distribution of the ac-
quisition noise [4], and taking the negative log of the maximum likelihood es-
timator; the maximum likelihood estimation takes the form of a least-squares
minimization problem:

Θ̂v = arg min
Θv

N∑

i=1

(mv,i − sv,i)
2

(3)

The IVIM model parameters Θv are estimated from the DW-MRI signal Sv

by solving the least-squares minimization problem (Eq. 3) for each voxel inde-
pendently using the Levenberg-Marquardt algorithm [16,23]. Initial estimates of
the model parameters were obtained with the least squares estimator [9].



2.2 The Spatially Constrained Incoherent Motion (SCIM) model

Taking the Bayesian perspective, our goal is to find the parametric maps Θ that
maximize the posterior probability associated with the maps given the observed
signal S and the spatial homogeneity prior knowledge:

Θ̂ = arg max
Θ

p(Θ|S) ∝ p(S|Θ)p(Θ) (4)

Based on the Hammersley-Clifford theorem [22], by using a spatial prior in
the form of a continuous-valued Markov random field, the posterior probability
p(S|Θ)p(Θ) can be decomposed into the product of node and clique potentials:

p(S|Θ)p(Θ) ∝
∏

v

p(Sv|Θv)
∏

vp∼vq

p(Θvp
, Θvq

) (5)

where p(Θv|Sv) is the data term representing the probability of voxel v to have
the DW-MRI signal Sv given the model parameters Θv, vp ∼ vq is the collection
of the neighboring voxels according to the employed neighborhood system, and
p(Θv,p, Θv,q) is the spatial homogeneity prior in the model.

By taking the negative logarithm of the posterior probability (Eq. 5), the
maximum a posteriori (MAP) estimate Θ is equivalent to the minimization of:

E(Θ) =
∑

v

φ(Sv;Θv) +
∑

vp∼vq

ψ(Θvp
, Θvq

) (6)

where φ(Sv;Θv) and ψ(Θv,p, Θv,q) are the compatibility functions:

φ(Sv;Θv) = − log p(Sv|Θv), ψ(Θvp
, Θvq

) = − log p(Θvp
, Θvq

) (7)

The data term φ(Sv;Θv) is given by taking the negative logarithm of the
likelihood function, the spatial homogeneity term is defined using the robust
L1-norm:

ψ(Θvp
, Θvq

) = αW |Θvp
−Θvq

| (8)

where α ≥ 0 weights the amount of spatial homogeneity enforced by the model,
and W is a diagonal weighting matrix that accounts for the different scales of
the parameters in Θv.

3 Experimental Results

3.1 Precision of incoherent motion parameter estimates from in-vivo

DW-MRI data of healthy volunteers

We obtained DW-MRI images of 5 health volunteers who underwent research
abdominal MRI studies between January 2013 and May 2013. We carried out
MR imaging studies of the abdomen using a 1.5-T unit (Magnetom Avanto,
Siemens Medical Solutions, Erlangen, Germany) with a body-matrix coil and



a spine array coil for signal reception. Free-breathing single-shot echo-planar
imaging was performed using the following parameters: repetition time/echo
time (TR/TE) = 6800/59 ms; SPAIR fat suppression; matrix size = 192×156;
eld of view = 300×260 mm; number of excitations = 1; slice thickness/gap = 5
mm/0.5 mm; 40 axial slices; 8 b-values = 5,50,100,200,270,400,600,800 s/mm2.
A tetrahedral gradient scheme, first proposed in Conturo et al. [2], was used
to acquire 4 successive images at each b-value with an overall scan acquisition
time of 4 min. Diffusion trace-weighted images at each b-value were generated
using geometric averages of the images acquired in each diffusion sensitization
direction [18].

We repeated the imaging acquisition six times to get six DW-MRI datasets,
each with low Signal to Noise Ratio (DW-MRIlow). We averaged the six DW-MRI
datasets to achieve high SNR DW-MRI images (DW-MRIhigh). We estimated the
model parameters from: 1) DW-MRIhigh using the independent voxel-wise ap-
proach (IVIMhigh); 2) DW-MRIlow using the independent voxel-wise approach
(IVIMlow), and 3) DW-MRIlow using the Spatially Constrained Incoherent Mo-
tion (SCIM) model (SCIMlow).

We calculated the precision of the parameter estimates by means of the co-
efficient of variation (CV) of the parameter estimates at each voxel in the IVIM
and SCIM maps of each patient using model-based wild-bootstrap analysis [3,6].
Fig. 2 depicts a representative parametric maps of the upper abdomen. The
SCIM model yields smoother, more realistic maps, especially for the f param-
eter. We set the value of α to 0.01 and the rescaling matrix W diagonal to
{1.0, 0.001, 0.0001, 0.01} to provide equal weight to each one of the incoherent
motion model parameters. Stopping criteria was defined as an energy improve-
ment of less than 0.1 from the initial energy or 500 iterations.

For each subject, we averaged the CV values over the same, three ROIs men-
tioned above. We first examined the statistical significance of the difference in
the precision of the parameter estimates between the IVIMhigh and the IVIMlow

estimates using a two-tailed paired Student’s t-test with p≤.05 as indicating a
significant difference. Then, we examined the statistical significance of the dif-
ference in the precision of the parameter estimates between the IVIMlow and the
SCIMlow estimates using the same test. We performed the statistical analyses
with standard statistical software (Matlab R© R2010b; The MathWorks, Natick,
MA, USA).

Fig. 3 presents the bar-plots of the CV values for each parameter estmiates.
While the repeated acquisition technqiue slightly reduced the CV compared to
this of the IVIMlow, the difference was not significant. However, by using the
SCIM model, the CV of the parameters estimates reduced substantially, by up
to 52%. The difference between the CV of the IVIMlow and the SCIMlow was
significant. In addition, we found that the SCIM model is up to 45% more efficient
in improving parameter estimate reliability compared to the repeated acquisition
and signal averaging technique. As seen in Fig. 3, the error bars of IVIMlow are
smaller than those of IVIMhigh, which implies there is less variation with lower
SNR. This issue will be investigated more in the future work.
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Fig. 2: Representative upper abdomen slice of the parametric maps reconstructed
by the IVIM method (1st row), and by the SCIM method (2nd row). The SCIM
method yields smoother, more realistic maps, with sensitivity to details.
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Fig. 3: Bar plot of the CV of the incoherent motion parameters as estimated
from 5 healthy subjects. The CV was significantly lower when using our SCIM
approach than when using the IVIM approach for all parameters. In contrast,
using repeated acquisition and signal averaging did not reduce the coefficient of
variation significantly.
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Fig. 4: Bar plot of the CV of the incoherent motion parameters as estimated
from 24 Crohn’s disease subjects (13 with normal ileum and 11 with abnormal
findings in the ileum). The CV was significantly lower when using our SCIM
approach than when using the IVIM approach for all parameters.

3.2 Precision of incoherent motion parameter estimates from in-vivo

DW-MRI data of Crohn’s disease patients

We acquired DW-MRI and MR enterography (MRE) data from 24 consecutive
patients with confirmed Crohn’s disease (15 males, 9 females; mean age 14.7
years; range: 5-24 years), who underwent a clinically indicated MRI study be-
tween January 1, 2011 and October 31, 2011 in our outpatient MRI department.
We carried out MRI imaging studies of the abdomen and the pelvic using a sim-
ilar protocol to this described in Section 3.1. MR enterography (MRE) protocol
for these patients included polyethylene glycol administration for bowel disten-
tion and gadolinium-enhanced, dynamic 3D VIBE (volume- interpolated breath
hold exam) in the coronal plane.

According to a consensus reading of two board certified radiologists of the
MRE data, we classified each patient ileum qualitatively as enhancing or non-
enhancing. 11 (46%) patients were diagnosed with abnormal findings in the ileum
and in 13 (54%) patients were diagnosed with normal findings in the ileum. We
estimated the signal decay model parameters using the IVIM and SCIM models.
We calculated the CV of the parameter estimates for each model. Fig. 4 presents
the bar-plots of the CV values for each parameter estimates in the ileum for the
normal and abnormal groups. The SCIM model reduced the CV of the f and D∗

parameters by 36% and 28% for the normal group, and by 39% and 31% for the
abnormal group, respectively, compared to the independent voxel-wise fitting of
the signal decay model.



4 Conclusions

The role of incoherent motion parameters as quantitative imaging biomarkers
for various clinical applications is becoming increasingly important. However,
the current method for estimating the DW-MRI signal decay model are not
reliable enough. The reliability of the parameter estimates can be improved
substantially by using a spatially constrained model for the signal decay model
parameter estimation. In this work, we evaluated the improvement achieved by
using our SCIM model using in-vivo abdominal DW-MRI data of 5 healthy
subjects and 24 Crohn’s disease patients. The SCIM model provides a better
mechanism to estimate the signal decay model parameters and a more precise
insight to the physiological causes of the DW-MRI signal decay and then the
voxel-wise independent IVIM model.
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