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Abstract. Thick-slice image acquisitions are sometimes inevitable in
magnetic resonance imaging due to limitations posed by pulse sequence
timing and signal-to-noise-ratio. The estimation of an isotropic high-
resolution volume from thick-slice MRI scans is desired for improved
image analysis and evaluation. In this article we formulate a maximum
a posteriori (MAP) estimation algorithm for high-resolution volumetric
MRI reconstruction. As compared to the previous techniques, this prob-
abilistic formulation relies on a slice acquisition model and allows the
incorporation of image priors. We focus on image priors based on im-
age gradients and compare the developed MAP estimation approach to
scattered data interpolation (SDI) and maximum likelihood reconstruc-
tion. The results indicate that the developed MAP estimation approach
outperforms the SDI techniques and appropriate image priors may im-
prove the volume estimation when the acquired thick-slice scans do not
sufficiently sample the imaged volume. We also report applications in
pediatric and fetal imaging.
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1 Introduction

Thick slice image acquisitions are sometimes inevitable in magnetic resonance
imaging (MRI) due to pulse sequence timing requirements and the need to main-
tain high signal-to-noise-ratio (SNR). Such scans are typically performed for T2-
weighted and diffusion weighted imaging in a variety of applications including
brain, lung, and heart imaging, and fetal and neonatal MRI. Thick-slice scans are
acquired in single shot fast spin echo (SSFSE) imaging of fetuses, neonates, and
pediatric patients who may move in the scanner [1]. SSFSE slices are acquired in
a fraction of a second, thus freezing the motion of the subject. Nevertheless, due
to thick slice acquisitions necessary to maintain SNR and the inter-slice motion
artifacts, these images do not appropriately reflect the 3D anatomy.

The reconstruction of a high-resolution volumetric image from thick slice
scans is desired for enhanced image analysis and improved evaluation. Inter-
slice reconstruction has been previously addressed in [2] based on an iterative
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back projection reconstruction algorithm, where multiple shifted thick-slice scans
provide dense sampling of the imaged object. In more recent studies [1], [3], [4]
high-resolution volumes have been reconstructed from fast slice scans of moving
subjects. These scans are affected by inter-slice motion thus iterations of slice-
to-volume registration and scattered data interpolation (SDI) have been used in
these studies for iterative motion estimation and volume reconstruction.

Nevertheless, scattered data interpolation techniques do not provide a math-
ematical framework to justify that the estimated high-resolution volume is a
minimum error representation of the imaged object given the acquired scans.
In this article we have formulated a general mathematical framework based on
a maximum a posteriori (MAP) estimation algorithm for high-resolution vol-
ume reconstruction. Inspired by the recent advances in super-resolution image
reconstruction [5], [6], the developed MAP estimation approach relies on a slice
acquisition model and minimizes a cost function of the error norm between the
estimated volume and the acquired slices.

In addition, the MAP estimation approach allows the incorporation of prior
image models for volume reconstruction, which is critical when the number of
thick-slice scans is limited and the slice thickness is significantly larger than
the matrix resolution. Under certain conditions the developed MAP estimation
approach simplifies to regularized MLE reconstruction, thus the main contribu-
tion in this article is the development and performance analysis of MAP volume
estimation and comparison to SDI and non-regularized MLE solutions.

As such, we focus on simple image priors based on image gradients for per-
formance analysis of high-resolution volume reconstruction using the formulated
MAP estimation approach. We limit our evaluation to the reconstruction of
isotropic brain volumes from a limited number of orthogonal thick-slice scans,
but the results can be generalized to similar applications. Our evaluation involves
quantitative analysis using synthetic digital brain phantom images, and appli-
cations in pediatric and fetal MRI. We compare the MAP estimation technique
with the B-Spline SDI approach in [1] and a non-regularized MLE solution, and
evaluate the effect of image priors under different scanning conditions.

2 Methods

In order to formulate the volume estimation problem in a super-resolution frame-
work we need to establish a slice acquisition model, which describes how the ac-
quired slices are obtained from the imaged object. The following slice acquisition
model is considered in this study:

yk = DkBkSkMkx + vk; k = 1, ..., n (1)

where yk is the vector of the voxels of the kth 2D slice with slice thickness ∆sk

and uniform in-plane spacing of ∆ρk; x is a vector of the desired reconstructed
image voxels in the lexicographical order with isotropic spacing of ∆ρ; vk is the
residual noise vector, n is the number of slices obtained from N scans, Mk is
the matrix of motion parameters, Sk is a matrix representing the slice selection
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profile, Bk is a blur matrix representing the point spread function (PSF) of the
MRI signal acquisition process, and Dk is a down-sampling matrix.

On the basis of Equation (1) the imaged object goes through geometric and
signal operations, including motion, slice selection and signal averaging, PSF
blur, and resampling, to generate the acquired slices. Assuming that all the ma-
trix operations, including the motion parameter matrices are known in Equation
(1), this equation can be written in a simple linear form like yk = Wkx + vk,
where Wk = DkBkSkMk. These linear equations can be augmented to form
a large linear matrix equation like y = Wx + v. Super-resolution volume re-
construction is the inverse problem of finding x given the acquired slices yk.
The classical solution to this linear inverse problem can be obtained through
maximum likelihood estimation (MLE).

The MAP estimation is considered as a generalization of MLE and is written
based on the conditional probability density function (PDF) of the acquired
slices yk given the estimated volume x̂ as well as the prior information about
the PDF of the estimated volume, i.e. Pr(x̂):

xMAP = arg max
x

[logPr(yk|x̂) + logPr(x̂)] (2)

The MAP solution depends on the probability functions. Here we assume that
the noise residuals (error samples) are drawn from Gaussian distributions with
mean of zero and standard deviation of σk. Therefore:

Pr(yk|x̂) =
∏

i

1
σk

√
2π

exp(− (ŷk(i)− yk(i))2

2σ2
k

) (3)

where yk(i) are the samples from the acquired slices yk, and ŷk(i) are the samples
from the estimated slices ŷk = Wkx̂ + vk. The error samples are defined by
ek(i) = ŷk(i)− yk(i), and the error vector is defined as ek = Wkx̂− yk.

Various image priors may be used. The simplest form involves an exponential
function that is quadratic in the voxel values of x, i.e. Pr(x̂) = exp(−x̂TQx̂);
where Q is a symmetric, positive definite matrix. Here we use Q = CTC where
C is the gradient magnitude image operation. Assuming independent slice acqui-
sitions the log-likelihood of the conditional PDF in Equation (3) is the sum of the
l2-norm of the error vectors over all the slices. Consequently the maximization
of the log likelihood function results in the following minimization problem:

x̂MAP = arg min
x

n∑
k=1

‖Wkx̂− yk‖2
2 + λ‖Cx̂‖2

2 (4)

The augmented matrix W in the linear inverse problem is very large and the
classical solution through pseudo-inverse is prohibitive. Instead we use a steepest
descent iterative minimization approach. The iterative solution of Equation (4)
based on image operators shown in Equation (1) is written as:

x̂n+1 = x̂n + α

n∑
k=1

MT
k ST

k BT
k DT

k (yk −DkBkSkMkx̂n)− λCTCx̂n, (5)
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where α is the step size in the direction of the gradient. The matrices Dk,
Bk, Sk, and Mk and their transposes are exactly interpreted as corresponding
image operators. Dk is defined as a resampling operation. Bk is defined as the
convolution with a Gaussian kernel resembling the point spread function (PSF)
of the MRI signal acquisition process. C is implemented as a gradient magnitude
image operation. λ is a weighting coefficient.

The slice selection profile Sk is defined based on the slice selection process.
For an arbitrary slice select direction defined by the normal vector of the slice
plane equation, the following geometrical equation is obtained for the voxels of
slice k (defined by a vector r) in the slice selection process: |µsk.r−s0k| < ∆sk/2;
where ∆sk is the slice thickness, and s0k is the distance of the slice from the
origin. µsk specifies the slice (or slice-selection) orientation and is interpreted as
the normal vector of the slice plane equation. The normal vector can be obtained
in the physical coordinate system based on the so-called direction cosines rota-
tion matrix. Consequently the Sk operation is implemented as rigid 3D rotation
with the rotation matrix directly obtained from direction cosines matrix, and its
transpose is the inverse (transpose) of the direction cosines matrix.

The motion matrix Mk is implemented as a 6-DOF 3D rigid transformation
(including three rotations and three translations). Motion estimation and super-
resolution volume reconstruction are considered as separable problems. Therefore
in the presence of inter-slice motion, iterations of motion correction and volume
reconstruction are performed to find Mk and x, respectively. Motion correction
can be performed through slice-to-volume registration [1], [3], or based on slice
intersections [4]. This is not a subject of interest in this article; in order to focus
on the performance analysis of volume reconstruction we assume that there is
no motion or the motion is known (accurately corrected) in our experiments.

3 Results

3.1 Quantitative Evaluation

Quantitative evaluation and comparison of the algorithms was carried out using
digital brain phantom (DBP) images obtained from the Brainweb database [7].
Thick slice scans in the axial, coronal and sagittal slice select directions were
synthetically generated from the high-resolution DBP images by applying oper-
ations based on Equation (1). The in-plane resolution of the synthetic scans was
1 mm and various slice thicknesses were examined between 2 to 8 mm.

Since a reference high-resolution volume is available for the validation dataset
(i.e. the original DBP images), the accuracy of reconstruction can be measured
quantitatively. Two measures are used here: Mean Absolute Error (MAE) and
Peak Signal to Noise Ratio (PSNR). MAE is defined as the mean absolute dif-
ferences of the voxel intensity values between the reference volume and the re-
constructed volume. PSNR is defined in the logarithmic decibel (dB) scale as
20 log10(MAX/

√
MSE), where MAX is the maximum possible voxel intensity

value (4096 in our experiments) and MSE is the mean square error of the voxel
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intensity values between the reference volume and the reconstructed volume.
Lower MAE and higher PSNR indicate more accurate reconstruction.

Fig. 1 shows the MAE and PSNR values computed as a function of the slice
thickness of synthesized thick-slice input scans for different volume reconstruc-
tion techniques. Four techniques have been considered: AVE is the simplest one
and is based on averaging the input scans resampled to the space of the desired
high-resolution volumetric image. SDI is a 3-level BSpline SDI approach based
on [1], MLE is a non-regularized MLE obtained from the MAP formulation by
setting λ = 0, and MAP is the MAP estimation with λ = 0.01. This value was
chosen experimentally as a normalization factor between the reconstruction error
image and the gradient magnitude of the estimated volume.

Fig. 1. MAE and PSNR between the ground truth DBP volume and the reconstructed
volumes as a function of slice thickness. The measures have been compared for 4 tech-
niques: AVE for averaging the resampled input scans, SDI for BSpline SDI, MLE for
non-regularized MLE, and MAP for the developed MAP estimation approach.

The results in Fig. 1 indicate that all the techniques perform better than
simple averaging. The developed MAP estimation approach outperforms SDI,
and is generally more accurate than MLE. The comparison of MAP and MLE at
slice thickness 2 mm indicates that if the slice thickness is not much larger than
the in-plane resolution, the prior image model may not provide improvements.
On the other hand, when the high-resolution volume space is not densely sam-
pled by the thick-slice scans (i.e. due to large slice thickness and limited number
of orthogonal scans), image priors significantly improve the reconstruction accu-
racy. This is observed for the slice thickness values between 3 to 5 mm. Finally,
when the slice thickness is too large (i.e. more than six times larger than the
in-plane resolution) image priors in the form of image gradients may not help
too much. Improvement of volume estimation is difficult in these cases due to
fundamental performance limits in super-resolution reconstruction [8].
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3.2 Application to Pediatric and Fetal MRI

The first application is the estimation of isotropic high-resolution volumes from
thick-slice T2-weighted TSE scans of pediatric patients who underwent clini-
cal brain MRI for the evaluation of tuberous sclerosis. As part of the imaging
procedure, two T2-weighted TSE volumes (one axial and one coronal) were ac-
quired for each patient using a Siemens Trio 3-Tesla scanner. TSE imaging was
performed with TR = 14070 ms, TE = 89 ms, matrix size of 512 × 512, slice
thickness of 2 mm, and in-plane resolutions between 0.4 to 0.5 mm. The scanning
protocol also involved a high-resolution T1-weighted (T1W) MPRAGE acquisi-
tion with TR = 2530 ms, TE = 3.39 ms, and isotropic resolution of 1 mm.

The acquired TSE scans, as well as the reconstructed volumes and the T1W
MPRAGE volume of a 3-year-old child are shown in Fig. 2. The reconstructed
volumes in this case have a high isotropic resolution of 0.5 mm3, which is four
times better than the slice thickness and two times better than the MPRAGE
volume. Visual inspection indicates that the MAP estimated volume is much
sharper and has a better contrast as compared to the SDI estimated volume.

Fig. 2. Application of the volume reconstruction algorithms to T2-weighted TSE im-
ages of a 3-year old child: Two thick-slice TSE scans were acquired and used for re-
construction in the (a) axial and (b) coronal directions; (c) and (d) are the volumes
reconstructed using the SDI approach and the MAP estimation approach, respectively,
and (e) is the acquired high-resolution T1W MPRAGE volume.

We use two sets of measures for comparing the accuracy of volume reconstruc-
tions. First we compute the similarity of the reconstructed T2W volumes to the
acquired high-resolution T1W volume. Normalized mutual information (NMI)
is appropriate in this case as it quantifies the nonlinear relationship between
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the intensity values of images with different contrast sources. We also use two
sharpness (focus) measures: M1 (the intensity variance measure) and M2 (the
energy of image gradient measure). Both measures are monotonic and robust to
noise [9]. The variance measure is calculated as the sum of square differences
(SSD) between each voxel intensity value and the mean image intensity value.
M2 is computed by integrating the magnitude of image gradient at all voxels.

The NMI measure computed as the similarity of T2W volume to the acquired
T1W volume was 1.61, 1.71, and 2.00 for the AVE, SDI, and MAP estimation
techniques respectively. This indicates that from an information-theoretic view-
point the intensity values of the MAP estimated volume better match with those
of the reference T1W volume. The computed M1 & M2 sharpness measures were
39092 & 6.7×1011, 41671 & 1.0×1012, and 43139 & 1.1×1012 for the AVE, SDI,
and MAP estimation techniques respectively. This indicates that the sharpest
volumes were obtained from the MAP estimation approach.

The second application of this technique is for fetal MRI. Iterative inter-
slice motion correction and volume reconstruction was performed here. Clinical
fetal MRI scans were obtained using a 1.5-T TwinSpeed Signa system and an
8-channel phased-array cardiac coil for pregnant patients with diagnosed or sus-
pected cases of fetal anomalies after diagnostic ultrasonography. The input scans
involve multiple SSFSE acquisitions in the fetal sagittal, axial and coronal planes
with slice thickness between 3 to 5 mm, and in-plane resolution of 0.7 to 0.8 mm.

Fig. 3 shows an example of volumetric fetal brain MRI reconstruction. Note
that the reconstructed volume clearly reflects the underlying continuity of tis-
sue structural boundaries in all three planes, whereas the original acquisitions
exhibit discontinuous tissue boundaries in the out-of-plane views due to the
effect of partial volume averaging. We examined 15 fetal brain MRI datasets
and computed sharpness measures. The average improvement in the M1 and
M2 sharpness measures with respect to the AVE reconstructed volumes were
8% and 20% for the SDI, and 12% and 42% for the MAP estimated volumes,
respectively.

4 Conclusion

We have developed a MAP estimation approach for the reconstruction of isotropic
high-resolution volumetric MRI from thick-slice orthogonal scans. This formula-
tion is based on a slice acquisition model, minimizes a cost function of an error
norm between the acquired thick-slice scans and the reconstructed volume, and
provides a framework for the incorporation of image priors. The results indicate
that the MAP estimation approach outperforms the scattered data interpolation
techniques, and image priors result in improved accuracy when the slice thick-
ness is 3 to 5 times larger than the in-plane resolution. In addition to fetal and
pediatric MRI, this approach can be used in many other MRI applications.

Acknowledgments. This research was supported in part by NIH grants R01
RR021885, R01 GM074068, R01 EB008015, and R43 MH086984.
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Fig. 3. Application of the volume reconstruction algorithms to a 31.43 week fetus:
Three of the six acquired SSFSE scans in fetal axial, coronal, and sagittal planes are
shown in (a) to (c) respectively. (d) and (e) show the volumes reconstructed with
isotropic resolution of 0.8 mm3 using the SDI approach and the MAP estimation ap-
proach, respectively. Note that coherent tissue boundaries present in all three planes
of the MAP estimated volume but not in the out-of-plane views of the original scans.
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