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ABSTRACT are estimated based on the Expectation-Maximization (EM)

Effect of different diseases on the brain can be studied an%lgorlthm. Then, the estlmate_d bias and variance parameter
are used for the group analysis to compare the group of con-

analyzed using brain’s complex functional and structuoal-c .
trols and patients. We have used our new measure to com-

nectivity network. Many complex network measures have are the functional network of a group of pediatric Tuberous
been used for this purpose in the literature. In this paperp group ot p

we have introduced a new mechanism for the analysis of thédgrOSis Compllex (TSC) pat.ient.s with age matghed healthy
brain connectivity network. In our framework, using a Ioop_subjects. TSC is a neurologic disorder and patients present

ulation of healthy subjects and patients, the true corwiecti W'th severe epl_lepsy, c_ognmve Imp airment and neur(_)behav
ral abnormalties, particularly autism [5]. In severaldies,

network, and each subject’s bias and variance are estimate L ) : . .
These parameters have been used to design a procedure g ormalities in the white matter of TSC patients including
ys-myelination in the white matter tracts have been regubrt

the comparison of two groups of brain networks. We han{6 However. there is a limited knowled n functional and
used our introduced measures for the comparison of the re ). However, the elsa ed knowledge on functionala
structural connectivity in pediatric TSC patients.

ing state functional MRI network of pediatric Tuberous Scle

rosis Complex (TSC) patients and healthy subjects. We have

shown that using our introduced measure, a significantreiffe 2. METHODS

ence between the two groups can be found. In addition, we

have compared our findings with a three well known complexAssume that the connectivity matriX; is generated for each

network measures. one of the patients and healthy subjects in a population with

J members. For each netwoyk w,,,; indicates the weight

of the link that connects the regionsandn. We assume that

there arel. nodes (regions) in each one of the networks. In the

literature, complex networks measures have been used+o ana

lyze the differences of the networks between the patierds an

1. INTRODUCTION controls. For this purpose, using each one of the measures,
global or local organization of the networks are charazesti

Human brain can be considered as a complex functional anghd then population of patients and healthy subjects are com
structural network [1]. Graph theory has been widely uttiz  pareq.

for the analysis and characterization of the brain conuipgti
network. To this end, using a measure, connectivity of dif- ) K
ferent parts of the brain are calculated and used to create%al- Tru€ Brain Networ

functional or structural connectivity matrix of the braiB]{  A|l of the above mentioned measures use graph features to
Recently and in different studies, group analysis have beegompare different networks. However, in our approach, we
utilized to analyze effect of diseases on the brain netw8fk [ consider each one of the connectivity matrices as a vanatio

For this purpose, a series of complex network measures hayg the true brain network. Following the approach in [7, 8],
been used to analyze the functional or structural connecti\ye model the variation in the following form:

ity networks of the brain. Using these measures, the effect o

different diseases on integration, segregation, cetyralnd Winnj = Tmn + B + €mnj 1)
resilience of each node and also the whole brain network has

been studied [4]. In this paper, we introduce a new measuta this formulationr is the true brain network and,,,, is the
which can be used to analyze brain networks. In the newveight of the link between the nodesandn in the true brain
framework, first, by using the population of the network® th network. Also,3 is the vector of bias of different networks in
true network, bias and variance of each one of the networkthe population wherg; shows the bias of-th network and

Index Terms— Functional connectivity, resting state
fMRI, Connectivity graph, Parcellation, Tuberous Sclésos
Complex



e is the error where,,,,,; denotes the error in the weight of Using this framework, the parameters are updated itelgtive
the link between nodes: andn. It is assumed that the er- until convergence is obtained which is guaranteed by using
ror has an uncorrelated normal distributieq,, ;~N (0, 032). EM algorithm. Last but not least, we initialize the bias and
Thus, we characterizg-th brain network in our population variance parameters to zero and one, respectively.

with a bias(3; from the true brain network and a varianeg

which models the errors. We assume that the joint disti@outi 2 2. Distance Calculation

of the weights given the default network and each network’s

parameters have the following form: After the calculation of the bias and variance of each networ
these parameters will be used for the analysis of the network
Pr(w|r,0,0) = () In this work, we focus on the application of the framework

for the group analysis. Without loss of generality, it can be
> assumed that the networks of subje¢ts {1,...,.J;} and

je{Ji+1,..,J}, indicate healthy subjects and patient, re-
where{.} is the pdf with normal distributionV(0,1). We spectively. It is possible to compare bias and variance of tw
assume that brain networks of different subjects in the fgpu 9groups independently, however, we are more interestedeto us
tion are independent. In addition, we also assume thatrike li both bias and variance parameters in the comparison of the
weights in the network are independent. Because of the syn@roups. To this end, for the control§) and patientsk), the
metrical form of the network, the elements of the matrix aredverage bias are computed using the following equations:
not independent and therefore, we need to use lower triangu- L2
lar part or upper triangular part of the network matriceseTh Bp = A Z 3;

Jj=1

J L L Wmnj *(Tnzn+ﬂ')
[TI] IT of et

j=lm=1n=1,n<m

true network is not known and maximization of complete data

likelihood can not be used to estimate the bias and variance J

of each one of the networks in the population. Thus, the EM Bo = 1 Z 3; (6)
algorithm is used to estimate the true brain network, biad, a Ja— 1
variance of each one of the networks. It should be mentioned B B

that there is no assumption about the weight values. For e)¥heresc andj3p denote average bias of controls and patients,
ample, one of the problems of resting state fMRI (rsfMRI)respectively. Moreover, using the following equationss th
analysis is the negative correlations and many complex ne@verage variance of contraig,, and the average variance of
work measures work on positive or negative weights. Thuspatientss%, can be computed:

in many methods, either the negative values are eliminated o

j=J1+1

J
two different networks are considered for negative and-posi 52 = 1 21: (02_ i (Bc B [3-)2)
tive connections [9]. Our aim is to find the bias and variance J1 45 / !
of each one of the networks. Using the EM algorithm at each 7
iterationt, the expectation stepsandr are computed using P 1 Z (02_ + (BP _ 5,)2) (7)
the following two equations: Ja—Ju ! !
' j=J1+1
r J 1 Now, it is possible to directly compare the Gaussian proba-
(02)®) Z (0]2.)(t) bility distribution of the controls and patients using anmpip-
=1 ability distance measure. In this paper, we use symmetrized
o _ S (Wi — B9)/(02)® @) Kullback-Leibler divergence (SKLD) for the.comparison of
mn 1/(c2)® the two groups which can be defined as [10]:
Then, in the maximization step using the results given in Eq. Sp = KLD(Np||N¢) + KLD(N¢||Np) (8)

3, estimation of3; for each one the networks is updated using , )
the following equation: where KLD(N;||N3), the Kullback-Leibler divergence

(KLD) of Gaussian probability distribution of group one

1 el and two is:
ﬂj('tﬂ) = m Z (Wmnj — 7—7(721) (4)
n=1,n<m KLD(N1HN2) =
Moreover, estimation of; for each one the networks is up- 1 (@2) (6}  (B2—B1)?
dated using the following equation: ) log @?) + (72) + 52 -1 ©)

(7)) = (%) O+
2.3. Complex Network Measures

n=L,m=L

1 t+1) @ \? :
g E (wmm -5 - ’mn) (5)  There are different types of complex network measures that
L(L-1)/2 : . .
n=1l,n<m can be used for the analysis of the brain network. In this



paper, we compared our findings with 3 well known mea-steps were applied to the rsfMRI data of each subject. Head
sures that are usually considered for this purpose. The comrotion was corrected by rigid registration of each volume
sidered measures are: Total connection strenfit)y Over- to the average of all volumes, and each motion corrected
all weighted clustering coefficient)), and Overall weighted volume was spatially smoothed using a 8-mm full-width half-
transitivity (I") [4]. For each subject;, C;, andT; can be  maximum (FWHM) Gaussian kernel. T1- weighted images

computed using the following set of equations: and their segmentation were registered to the average of the
head motion corrected rsfMRI images. Using a regression
1 . . .
Kj=— Zwmnj model, linear and quadratic trends, the averaged signal ove
L o, the whole brain, the averaged signal over the ventricled, an
L S (W W0 ,)(é) the averaged signal over the deep white matter were removed
Cj == Z nk\ Tmng Zmkj Tnkg [3]. Finally, the time series were band pass filtered by retai
T L= (3, Wing ) (2, Wimng — 1) ing frequencies between 0.01-0.08Hz.

For each one of cortical/sub-cortical grey matter struesur
T (10) the average pre-processed time signal was utilized to con-
Y om Qo Winng) (D2, Wimng — 1) struct a weighted connectivity graph for each subject, thase

Similar to our approach, for each one of these complex neQ" Pearson’s correlation. In this paper, we focus on pos-
work measures, and also for the group of patients and contive connectivity to be able to compare our findings with
trols, the average can be computed and their difference c4R€ results of other complex network measures. \We have

be used for the analysis of the group differences. We definéS€d our approach to estimate the true connectivity matrix
these differences @, Cp andT)p. of brain network which is shown in Figure 1(b). In addition,

Figures 1(c) and 1(d) show a sample connectivity matrix of
TSC patient and healthy subject. It can be seen in the fig-
ure that the connectivity matrix of healthy subjects and the
After finding the differences between the two groups usingestimated true connectivity matrix are similar. We applied
any measure, the differences should be examined using a s&-group difference analysis using the permutation test for
tistical test. In this paper, we have used the permutatish teour introduced method and also for each one of the complex
for the analysis of the group differences. To this end, firsthetwork measures. For the permutation test and for each one
the distance between the two groups are computed using eaghthe measures, we have used 10,000 random permutations
one of the measures. Then, subjects are randomly divideand a significance threshold of 0.05 for the tests. Stadistic
to two groups withJ; and J — J; subjects and the differ- analysis using the permutation test shows a significardmiff
ence between the two groups are computed for each one efice between patients and healthy subject using our agproac

Zm,n,k(wmnjwmkjwnkj)(%)

T; =

2.4. Statistics

the measures. The procedure is repedtdimes to findSy,,  (ps < 0.05). In addition, the permutation test shows a sig-
K%,,C7, andTF, for eachr € {1,..., R}. Finally, we cal- nificant difference between TSC patients and controls fer th
culate p-value of measut® usingpx = R-3, HI(%XD—X)S) total connection strength and overall weighted clustedog

where H is the step function. In this formulation, the num- €fficients, pc, pre < 0.05). However, the difference between
ber of times that the difference of the measures, between twi§€ tWO groups is not significant based on an overall weighted
randomly generated groups, is larger than the differenee bdransitivity (pr > 0.08). These finding shows that the in-
tween the controls and the TSC patients, is used to estimafgPduced measure can be used for the connectivity network
the p-value. In the next section, we use this strategy for th@nalysis.
evaluation of different measures.
4. CONCLUSIONS
3. RESULTS

We have introduced a measure for the comparison of the con-
Structural MRI and rsfMRI were carried out in 22 subjectsnectivity matrix of a group of patients and healthy subjects
with TSC (age range 3-24 years, mean age 11.4), and im our framework, based on the population of subjects, the
18 age-matched controls on a 3T Siemens scanner. Ftnue brain network, bias, and variance of each one of the sub-
rsfMRI, sequences with TR ranging from 2400ms to 3000mgects are estimated where these parameters can be used for th
were used. T1l-weighted MPRAGE images of each subgroup analysis. We performed resting state functional con-
ject were automatically segmented by label fusion into 12&ectivity group analysis of pediatric TSC patients and con-
cortical/sub-cortical structures using the IBSR datagety  trols. Differences in connectivity could help explain theun
The fusion algorithm is an extension of STAPLE algorithmrological phenotype in patients with TSC, as decreasedlong
[12]. Figure 1(a) shows parcellation and segmentation of amange connectivity is thought to be associated with autism
axial slice through the brain based on 114 cortical and subspectrum disorders. The statistical analysis using peatiout
cortical grey matter structures. A series of pre-procagsintest on our introduced measure shows a significant differenc



between the network® (< 0.05). In addition, we have used [2] E. Bullmore and O. Sporns, “Complex brain networks:
three well known complex network measures for the analysis  graph theoretical analysis of structural and functional
of the same subjects. Two of the complex network measures  systems,” Nature Reviews Neuroscienoeol. 10, no.
show a significant difference between functional connédgtiv 3, pp. 186-198, 2009.

in TSC patients compared to controts< 0.05). It should be
pointed out that we have used our method for the global net-13l
work analysis, however, it is also possible to use our method
to find the local differences between patient population and
healthy subjects, given that there is no global differenee b
tween the two groups.
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