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ABSTRACT

Effect of different diseases on the brain can be studied and
analyzed using brain’s complex functional and structural con-
nectivity network. Many complex network measures have
been used for this purpose in the literature. In this paper,
we have introduced a new mechanism for the analysis of the
brain connectivity network. In our framework, using a pop-
ulation of healthy subjects and patients, the true connectivity
network, and each subject’s bias and variance are estimated.
These parameters have been used to design a procedure for
the comparison of two groups of brain networks. We have
used our introduced measures for the comparison of the rest-
ing state functional MRI network of pediatric Tuberous Scle-
rosis Complex (TSC) patients and healthy subjects. We have
shown that using our introduced measure, a significant differ-
ence between the two groups can be found. In addition, we
have compared our findings with a three well known complex
network measures.

Index Terms— Functional connectivity, resting state
fMRI, Connectivity graph, Parcellation, Tuberous Sclerosis
Complex

1. INTRODUCTION

Human brain can be considered as a complex functional and
structural network [1]. Graph theory has been widely utilized
for the analysis and characterization of the brain connectivity
network. To this end, using a measure, connectivity of dif-
ferent parts of the brain are calculated and used to create a
functional or structural connectivity matrix of the brain [2].
Recently and in different studies, group analysis have been
utilized to analyze effect of diseases on the brain network [3].
For this purpose, a series of complex network measures have
been used to analyze the functional or structural connectiv-
ity networks of the brain. Using these measures, the effect of
different diseases on integration, segregation, centrality, and
resilience of each node and also the whole brain network has
been studied [4]. In this paper, we introduce a new measure
which can be used to analyze brain networks. In the new
framework, first, by using the population of the networks, the
true network, bias and variance of each one of the networks

are estimated based on the Expectation-Maximization (EM)
algorithm. Then, the estimated bias and variance parameters
are used for the group analysis to compare the group of con-
trols and patients. We have used our new measure to com-
pare the functional network of a group of pediatric Tuberous
Sclerosis Complex (TSC) patients with age matched healthy
subjects. TSC is a neurologic disorder and patients present
with severe epilepsy, cognitive impairment and neurobehav-
ioral abnormalties, particularly autism [5]. In several studies,
abnormalities in the white matter of TSC patients including
dys-myelination in the white matter tracts have been reported
[6]. However, there is a limited knowledge on functional and
structural connectivity in pediatric TSC patients.

2. METHODS

Assume that the connectivity matrixWj is generated for each
one of the patients and healthy subjects in a population with
J members. For each networkj, wmnj indicates the weight
of the link that connects the regionsm andn. We assume that
there areL nodes (regions) in each one of the networks. In the
literature, complex networks measures have been used to ana-
lyze the differences of the networks between the patients and
controls. For this purpose, using each one of the measures,
global or local organization of the networks are characterized
and then population of patients and healthy subjects are com-
pared.

2.1. True Brain Network

All of the above mentioned measures use graph features to
compare different networks. However, in our approach, we
consider each one of the connectivity matrices as a variation
of the true brain network. Following the approach in [7, 8],
we model the variation in the following form:

wmnj = τmn + βj + ǫmnj (1)

In this formulationτ is the true brain network andτmn is the
weight of the link between the nodesm andn in the true brain
network. Also,β is the vector of bias of different networks in
the population whereβj shows the bias ofj-th network and



ǫ is the error whereǫmnj denotes the error in the weight of
the link between nodesm andn. It is assumed that the er-
ror has an uncorrelated normal distributionǫmnj∼N(0, σ2

j ).
Thus, we characterizej-th brain network in our population
with a biasβj from the true brain network and a varianceσ2

j

which models the errors. We assume that the joint distribution
of the weights given the default network and each network’s
parameters have the following form:

Pr(w|τ, σ, β) = (2)
J

∏

j=1

L
∏

m=1

L
∏

n=1,n<m

φ

(

wmnj − (τmn + βj)

σj

)

whereφ{.} is the pdf with normal distributionN(0, 1). We
assume that brain networks of different subjects in the popula-
tion are independent. In addition, we also assume that the link
weights in the network are independent. Because of the sym-
metrical form of the network, the elements of the matrix are
not independent and therefore, we need to use lower triangu-
lar part or upper triangular part of the network matrices. The
true network is not known and maximization of complete data
likelihood can not be used to estimate the bias and variance
of each one of the networks in the population. Thus, the EM
algorithm is used to estimate the true brain network, bias, and
variance of each one of the networks. It should be mentioned
that there is no assumption about the weight values. For ex-
ample, one of the problems of resting state fMRI (rsfMRI)
analysis is the negative correlations and many complex net-
work measures work on positive or negative weights. Thus,
in many methods, either the negative values are eliminated or
two different networks are considered for negative and posi-
tive connections [9]. Our aim is to find the bias and variance
of each one of the networks. Using the EM algorithm at each
iterationt, the expectation stepsσ andτ are computed using
the following two equations:

1

(σ2)(t)
=

J
∑

j=1

1

(σ2
j )(t)

τ (t)
mn =

∑J

j=1(wmnj − β
(t)
j )/(σ2

j )(t)

1/(σ2)(t)
(3)

Then, in the maximization step using the results given in Eq.
3, estimation ofβj for each one the networks is updated using
the following equation:

β
(t+1)
j =

1

L(L − 1)/2

n=L,m=L
∑

n=1,n<m

(wmnj − τ (t)
mn) (4)

Moreover, estimation ofσj for each one the networks is up-
dated using the following equation:

(σ2
j )(t+1) = (σ2)(t)+

1

L(L − 1)/2

n=L,m=L
∑
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j − τ (t)

mn

)2

(5)

Using this framework, the parameters are updated iteratively
until convergence is obtained which is guaranteed by using
EM algorithm. Last but not least, we initialize the bias and
variance parameters to zero and one, respectively.

2.2. Distance Calculation

After the calculation of the bias and variance of each network,
these parameters will be used for the analysis of the networks.
In this work, we focus on the application of the framework
for the group analysis. Without loss of generality, it can be
assumed that the networks of subjectsj ∈ {1, ..., J1} and
j ∈ {J1 + 1, ..., J}, indicate healthy subjects and patient, re-
spectively. It is possible to compare bias and variance of two
groups independently, however, we are more interested to use
both bias and variance parameters in the comparison of the
groups. To this end, for the controls (C) and patients (P ), the
average bias are computed using the following equations:

β̄P =
1

J1

J1
∑

j=1

βj

β̄C =
1

J2 − J1

J
∑

j=J1+1

βj (6)

whereβ̄C andβ̄P denote average bias of controls and patients,
respectively. Moreover, using the following equations, the
average variance of controls̄σ2

C , and the average variance of
patients̄σ2

P , can be computed:
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(7)

Now, it is possible to directly compare the Gaussian proba-
bility distribution of the controls and patients using any prob-
ability distance measure. In this paper, we use symmetrized
Kullback-Leibler divergence (SKLD) for the comparison of
the two groups which can be defined as [10]:

SD = KLD(NP ||NC) + KLD(NC ||NP ) (8)

where KLD(N1||N2), the Kullback-Leibler divergence
(KLD) of Gaussian probability distribution of group one
and two is:

KLD(N1||N2) =
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(9)

2.3. Complex Network Measures

There are different types of complex network measures that
can be used for the analysis of the brain network. In this



paper, we compared our findings with 3 well known mea-
sures that are usually considered for this purpose. The con-
sidered measures are: Total connection strength (K), Over-
all weighted clustering coefficient (C), and Overall weighted
transitivity (T ) [4]. For each subject,Kj , Cj , andTj can be
computed using the following set of equations:

Kj =
1
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∑
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Similar to our approach, for each one of these complex net-
work measures, and also for the group of patients and con-
trols, the average can be computed and their difference can
be used for the analysis of the group differences. We define
these differences asKD, CD andTD.

2.4. Statistics

After finding the differences between the two groups using
any measure, the differences should be examined using a sta-
tistical test. In this paper, we have used the permutation test
for the analysis of the group differences. To this end, first,
the distance between the two groups are computed using each
one of the measures. Then, subjects are randomly divided
to two groups withJ1 and J − J1 subjects and the differ-
ence between the two groups are computed for each one of
the measures. The procedure is repeatedR times to findSr

D,
Kr

D,Cr
D andT r

D for eachr ∈ {1, . . . , R}. Finally, we cal-

culate p-value of measureX usingpX =
R−

P

r
H(XD−Xr

D
)

R

whereH is the step function. In this formulation, the num-
ber of times that the difference of the measures, between two
randomly generated groups, is larger than the difference be-
tween the controls and the TSC patients, is used to estimate
the p-value. In the next section, we use this strategy for the
evaluation of different measures.

3. RESULTS

Structural MRI and rsfMRI were carried out in 22 subjects
with TSC (age range 3-24 years, mean age 11.4), and in
18 age-matched controls on a 3T Siemens scanner. For
rsfMRI, sequences with TR ranging from 2400ms to 3000ms
were used. T1-weighted MPRAGE images of each sub-
ject were automatically segmented by label fusion into 128
cortical/sub-cortical structures using the IBSR datasets[11].
The fusion algorithm is an extension of STAPLE algorithm
[12]. Figure 1(a) shows parcellation and segmentation of an
axial slice through the brain based on 114 cortical and sub-
cortical grey matter structures. A series of pre-processing

steps were applied to the rsfMRI data of each subject. Head
motion was corrected by rigid registration of each volume
to the average of all volumes, and each motion corrected
volume was spatially smoothed using a 8-mm full-width half-
maximum (FWHM) Gaussian kernel. T1- weighted images
and their segmentation were registered to the average of the
head motion corrected rsfMRI images. Using a regression
model, linear and quadratic trends, the averaged signal over
the whole brain, the averaged signal over the ventricles, and
the averaged signal over the deep white matter were removed
[3]. Finally, the time series were band pass filtered by retain-
ing frequencies between 0.01-0.08Hz.
For each one of cortical/sub-cortical grey matter structures,
the average pre-processed time signal was utilized to con-
struct a weighted connectivity graph for each subject, based
on Pearson’s correlation. In this paper, we focus on pos-
itive connectivity to be able to compare our findings with
the results of other complex network measures. We have
used our approach to estimate the true connectivity matrix
of brain network which is shown in Figure 1(b). In addition,
Figures 1(c) and 1(d) show a sample connectivity matrix of
TSC patient and healthy subject. It can be seen in the fig-
ure that the connectivity matrix of healthy subjects and the
estimated true connectivity matrix are similar. We applied
a group difference analysis using the permutation test for
our introduced method and also for each one of the complex
network measures. For the permutation test and for each one
of the measures, we have used 10,000 random permutations
and a significance threshold of 0.05 for the tests. Statistical
analysis using the permutation test shows a significant differ-
ence between patients and healthy subject using our approach
(pS < 0.05). In addition, the permutation test shows a sig-
nificant difference between TSC patients and controls for the
total connection strength and overall weighted clusteringco-
efficients, (pC , pK < 0.05). However, the difference between
the two groups is not significant based on an overall weighted
transitivity (pT > 0.08). These finding shows that the in-
troduced measure can be used for the connectivity network
analysis.

4. CONCLUSIONS

We have introduced a measure for the comparison of the con-
nectivity matrix of a group of patients and healthy subjects.
In our framework, based on the population of subjects, the
true brain network, bias, and variance of each one of the sub-
jects are estimated where these parameters can be used for the
group analysis. We performed resting state functional con-
nectivity group analysis of pediatric TSC patients and con-
trols. Differences in connectivity could help explain the neu-
rological phenotype in patients with TSC, as decreased long-
range connectivity is thought to be associated with autism
spectrum disorders. The statistical analysis using permutation
test on our introduced measure shows a significant difference



between the networks (p < 0.05). In addition, we have used
three well known complex network measures for the analysis
of the same subjects. Two of the complex network measures
show a significant difference between functional connectivity
in TSC patients compared to controls (p < 0.05). It should be
pointed out that we have used our method for the global net-
work analysis, however, it is also possible to use our method
to find the local differences between patient population and
healthy subjects, given that there is no global difference be-
tween the two groups.
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(a) Brain Parcellation. (b) True Brain Network.

(c) Sample TSC Network. (d) Sample Healthy Network.

Fig. 1. Brain parcellation and connectivity matrices. (a). Par-
cellation and segmentation of an axial slice based on 114 cor-
tical and sub-cortical grey matter structures. (b). Estimated
true brain network. (c). Network of a patient with TSC. (d).
Network of a healthy subject.
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